• Welcome to the new Internet Infidels Discussion Board, formerly Talk Freethought.

Extending Factorials

Can one construct a sort of super factorial function? Yes.

 Hyperfactorial and Hyperfactorial -- from Wolfram MathWorld

\( \displaystyle{ H(n) = \prod_{k=1}^n k^k } \)

It can be generalized to non-integer arguments like the factorial function:

 K-function and K-Function -- from Wolfram MathWorld

\( H(n) = K(n+1) \)

with integral definition
\( \displaystyle{ K(z) = (2\pi)^{-(z-1)/2} \exp \left( \frac{z(z-1)}{2} + \int_0^{z-1} \log \Gamma(t+1) \, dt \right) } \)

A related funciton is the
 Barnes G-function and Barnes G-Function -- from Wolfram MathWorld

For integer arg: \( \displaystyle{ G(n+2) = \prod_{k=1}^n k! } \) and \( \displaystyle{ G(n+1) = \frac{(n!)^n}{H(n)} } \)

For general arg: \( \displaystyle{ G(z) = \frac{\Gamma(z)^{z-1}}{K(z)} } \)

For general arg, it is given by an infinite product:
\( \displaystyle{ G(z+1) = (2\pi)^{z/2} \exp \left( - \frac{z + z^2(\gamma + 1)}{2} \right) \prod_{k=1}^\infty \left[ \left( 1 + \frac{z}{k} \right)^k \exp \left( \frac{z^2}{2k} - z \right) \right] } \)
 
 Stirling's approximation is an asymptotic formula for the factorial / gamma function:

\( \displaystyle{ \log \Gamma(z+1)= z (\log z - 1) + \frac{1}{2} \log (2\pi z) + \sum_{n=1}^N \frac{B_{2n}}{2n(2n-1) z^{2n-1}} + O\left( \frac{1}{z^{2N+1}} \right) } \)

for cutoff index N.

Thus, \( n! \sim n^n e^{-n} \sqrt{2\pi n} \)

The analogous formula for the hyperfactorial is

\( \displaystyle{ H(n) \sim A n^{n^2/2 + n/2 + 1/12 } e^{-n^2/2} } \)

where A is the

 Glaisher–Kinkelin constant and Glaisher-Kinkelin Constant -- from Wolfram MathWorld ~ 1.282427...
 
Back
Top Bottom