A NASA research team of scientists at the Johnson Space Center (JSC), Houston, TX, and at Stanford University, Palo Alto, CA, has found evidence that strongly suggests primitive life may have existed on Mars more than 3.6 billion years ago.
The NASA-funded team found the first organic molecules thought to be of Martian origin; several mineral features characteristic of biological activity; and possible microscopic fossils of primitive, bacteria-like organisms inside of an ancient Martian rock that fell to Earth as a meteorite. This array of indirect evidence of past life will be reported in the August 16 issue of the journal Science, presenting the investigation to the scientific community at large for further study.
The two-year investigation was co-led by JSC planetary scientists Dr. David McKay, Dr. Everett Gibson and Kathie Thomas-Keprta of Lockheed-Martin, with the major collaboration of a Stanford team headed by Professor of Chemistry Dr. Richard Zare, as well as six other NASA and university research partners.
"There is not any one finding that leads us to believe that this is evidence of past life on Mars. Rather, it is a combination of many things that we have found," McKay said. "They include Stanford's detection of an apparently unique pattern of organic molecules, carbon compounds that are the basis of life. We also found several unusual mineral phases that are known products of primitive microscopic organisms on Earth. Structures that could be microsopic fossils seem to support all of this. The relationship of all of these things in terms of location - within a few hundred thousandths of an inch of one another - is the most compelling evidence."
"It is very difficult to prove life existed 3.6 billion years ago on Earth, let alone on Mars," Zare said. "The existing standard of proof, which we think we have met, includes having an accurately dated sample that contains native microfossils, mineralogical features characteristic of life, and evidence of complex organic chemistry."
"For two years, we have applied state-of-the-art technology to perform these analyses, and we believe we have found quite reasonable evidence of past life on Mars," Gibson added. "We don't claim that we have conclusively proven it. We are putting this evidence out to the scientific community for other investigators to verify, enhance, attack -- disprove if they can -- as part of the scientific process. Then, within a year or two, we hope to resolve the question one way or the other."
"What we have found to be the most reasonable interpretation is of such radical nature that it will only be accepted or rejected after other groups either confirm our findings or overturn them," McKay added.
The igneous rock in the 4.2-pound, potato-sized meteorite has been age-dated to about 4.5 billion years, the period when the planet Mars formed. The rock is believed to have originated underneath the Martian surface and to have been extensively fractured by impacts as meteorites bombarded the planets in the early inner solar system. Between 3.6 billion and 4 billion years ago, a time when it is generally thought that the planet was warmer and wetter, water is believed to have penetrated fractures in the subsurface rock, possibly forming an underground water system.